PageRank of Scale-Free Growing Networks
نویسندگان
چکیده
PageRank is one of the principle criteria according to which Google ranks Web pages. PageRank can be interpreted as a frequency of Web page visits by a random surfer and thus it reflects the popularity of a Web page. In the present work we find an analytical expression for the expected PageRank value in a scale free growing network model as a function of the age of the growing network and the age of a particular node. Then, we derive asymptotics that shows that PageRank follows closely a power law. The exponent of the theoretical power law matches very well the value found from measurements of the Web. Finally, we provide a mathematical insight for the choice of the damping factor in PageRank definition. Key-words: PageRank, Web Graph, Growing scale free networks, Pólya-Eggenberger urn models, Power law, scale-free The present work is partially supported by EGIDE ECO-NET grant no. 10191XC and the European Research Grant BIONETS. ∗ INRIA Sophia Antipolis, France, e-mail: [email protected] † Ecole Polytechnique, France, e-mail: [email protected] PageRank dans les Modèles Scale Free de Réseaux Croissants Résumé : PageRank est un des principaux critères de classement des pages Web par Google. PageRank peut être interpreté comme la fréquence de visites d’une page Web par un utilisateur aléatoire, on peut donc aussi l’appeler la popularité de cette page Web. Dans ce travail, nous donnons une expression analitique pour le PageRank moyen dans les modéles scale-free de réseaux croissants. Cette expression est obtenue comme une fonction de l’âge du modèle et de l’âge d’un nœud. En plus, on obtient les asymptotiques qui démontrent que la distribution approche une loi en puissance. L’exposant théorique de cette loi est trés proche des valeurs trouvées dans les mesures expérimentales du Web. L’expression ainsi trouvée fournit une base de raisonnement mathématique au choix du facteur d’abandon par Google. Mots-clés : PageRank, World Wide Web, Graphes aléatoires, Modèles d’urnes de PólyaEggenberger, loi en puissance, scale-free PageRank of Scale Free Growing Networks 3
منابع مشابه
PageRank model of opinion formation on social networks
We propose the PageRank model of opinion formation and investigate its rich properties on real directed networks of Universities of Cambridge and Oxford, LiveJournal and Twitter. In this model the opinion formation of linked electors is weighted with their PageRank probability. We find that the society elite, corresponding to the top PageRank nodes, can impose its opinion to a significant fract...
متن کاملPageRank model of opinion formation on Ulam networks
We consider a PageRank model of opinion formation on Ulam networks, generated by the intermittency map and the typical Chirikov map. The Ulam networks generated by these maps have certain similarities with such scale-free networks as the World Wide Web (WWW), showing an algebraic decay of the PageRank probability. We find that the opinion formation process on Ulam networks have certain similari...
متن کاملGoogle matrix, dynamical attractors, and Ulam networks.
We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius operator of the Chirikov typical map with dissipation. The finite-size matrix approximant of this operator is constructed by the Ulam method. This method applied to the simple dynamical model generates directed Ulam networks with approximate scale-free scaling and characteristics being in certain feature...
متن کاملGoogle Matrix Analysis of DNA Sequences
For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW). At the same time the...
متن کاملSimulating Network Influence Algorithms Using Particle-Swarms: PageRank and PageRank-Priors
A particle-swarm is a set of indivisible processing elements that traverse a network in order to perform a distributed function. This paper will describe a particular implementation of a particle-swarm that can simulate the behavior of the popular PageRank algorithm in both its global-rank and relative-rank incarnations. PageRank is compared against the particleswarm method on artificially gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Internet Mathematics
دوره 3 شماره
صفحات -
تاریخ انتشار 2007